Download PDF Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili
It will certainly lead you making or end up being someone much better. Precious times for analysis is acquired since you do not squander the time for something problem. When you actually read this publication intelligently and also perfectly, what you seek fro will be ultimately gained. To obtain Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili in this short article, you need to get the link. That is the link of guide to download and install. When the soft file of guide can help you simpler, why not you make a possibility to obtain this book right now? Be the initial people that get this book right here!

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Download PDF Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili
In der Montage des neuen aktualisierten Buch veröffentlicht, beschäftigen wir Ihnen. Wir sind die Online-Seite, die ein wirklich wunderbares Mittel, wunderbare Sicht sowie hervorragende Inserate der Sammlungen Publikationen aus vielen Ländern immer versorgt. Buch als eine Art und Weise, die Nachrichten zu verbreiten und auch Details über das Leben, soziale, wissenschaftliche Forschungen, Religionen, einige andere halten eine äußerst wichtige Leitlinie. Buch konnte nicht wie die Mode, wenn sie Tag auslaufen, werden sie sicherlich funktionieren wie nichts.
Wenn Freizeit hat, genau das, was sollten Sie tun? Nur ruht oder in Ihrem Hause seatsing? Füllen Sie Ihre Freizeit durch das Lesen. Beginnen Sie mit jetzt, Sie Zeit kostbar sein müssen. Ein kredenzt das kann gerade im Material werden; Dazu ist es Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili Dieses Buch ist nicht nur für sein Produkt der Lesung vorgesehen ist. Sie erkennen, aus dem Titel zu sehen und auch den Namen des Autors, müssen Sie wissen, wie die Qualität dieser Publikation. Auch der Autor und Titel sind nicht die, die eine Entscheidung Führung macht trifft oder nicht, können Sie t mit der Erfahrung sowie Kenntnisse vergleichen, dass der Schriftsteller hat.
Wegen der erfahrenen und auch Fach Effizienz des Schriftstellers, könnten Sie zeigen, wie dieses Buch für die Herstellung der große Situation befindet. Dies ist nicht nur in Bezug auf Ihre Drehkonzepte. Es hat zu tun mit genau dem, was Publikation, die Sie in diesem aktuellen Alter lesen sollen. Sowie Sie immer richtig zu machen mit den Details aufgewertet fühlen, Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili angeboten wird und ideal angemessen zu lesen.
Machen Sie diese Veröffentlichung als Favorit Publikation zur Zeit zu überprüfen. Es gibt keine viel bessere Veröffentlichung mit dem gleichen Thema wie dieses Set. Sie können sehen, wie die Worte, die tatsächlich geeignet erstellt werden, sind um Ihren Zustand zu fördern viel besser zu machen. Jetzt können Sie auch das Gefühl, dass die wichtigen Dinge von Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili sind dargebotene nicht nur für für die Zuschauer gute Chancen zu machen, sondern auch gute Atmosphäre geben für das Ergebnis von dem, was zu schreiben.

Über den Autor und weitere Mitwirkende
Sebastian Raschka verfügt über jahrelange Erfahrung in der Python-Programmierung und leitete mehrere Seminare über praktische Data-Science-Anwendungen, Machine Learning und Deep Learning u.a. auf der SciPy-Konferenz. Vahid Mirjalili erforscht Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten (»maschinelles Sehen«) am Fachbereich für Informatik und Ingenieurswesen an der Michigan State University.
Produktinformation
Broschiert: 584 Seiten
Verlag: mitp; Auflage: 2. überarbeitete Auflage 2018 (22. Dezember 2017)
Sprache: Deutsch
ISBN-10: 3958457339
ISBN-13: 978-3958457331
Größe und/oder Gewicht:
16,9 x 3,2 x 23,8 cm
Durchschnittliche Kundenbewertung:
5.0 von 5 Sternen
2 Kundenrezensionen
Amazon Bestseller-Rang:
Nr. 100.090 in Bücher (Siehe Top 100 in Bücher)
Ich hatte bereits die 1. Auflage von Sebastian Raschka rezensiert und gelobt. Ich nutze das Buch, nun in der zweiten Auflage, für meine Lehre im Bereich Data Science / Machine Learning. Die zweite Auflage ist überarbeitet und vom hinzugekommenen Co-Author, Vahid Mirjalili, um weitere Kapitel ergänzt worden. Die neuen Kapitel erklären die künstlichen neuronalen Netze noch mehr im Detail und führen - erst mit Code und dann mit Prinzip-Erklärungen - in TensorFlow ein.Der große Vorteil des Buches ist der richtige Mix aus mathematischen Erklärungen, Erklärungen mit Programmierbeispielen ohne Bibliothek (abgesehen von numpy, pandas...) und Programmierbeispielen mit den ML-Bibliotheken Sklearn und (nun ab der 2. Auflage) TensorFlow.Sehr gut! Klare Empfehlung!
Ich habe bereits die erste Auflage des Buches gelesen und hab jetzt auch die zweiteAuflage gelesen, und konnte mir einen Einblick darüber machen, was sich soalles verändert hat.Was steht drin------------------Die zweite Auflage unterteilt sich in 16 Kapiteln, die insgesamt 585 Seiten umfassen.Im Vergleich zur Vorauflage sind drei Kapitel und über 150 Seiten dazu gekommen.Die ersten Kapitel beginnt mit den Grundlagen des maschinellen Lernens. So wirdzu Beginn auf die drei verschiedenen Arten des Lernens eingegangen und an Hand vonBeispielen erläutert. Anschließend geht es zügig weiter und man programmiert denersten Lernalgorithmus. Im dritten Kapitel wird in die Bibliothek scikit-learn eingeführt,womit weiterführende Lernalgorithmen implementiert werden. Im vierten und fünftenKapitel geht es anschließend um die Datenvorverarbeitung sowie die Datenkomprimierung.Die ersten fünf Kapitel dienten dazu die Grundlagen zu vermitteln. Ab dem sechstenKapitel geht es an die tiefergehenden Themen, die allerdings ebenfalls für einerfolgreiches Einsetzen von Machine Learning Verfahren in der Praxis benötigt werden.Das sechte Kapitel behandelt etwa die Best Practices zur Modellbewertung sowiedie Abstimmung von Hyperparameter. Weiter geht es im siebten Kapitel mit der Kombinationverschiedener Modelle für das Ensemble Learning. Das achte Kapitel beinhaltetein Praxisbeispiel um die Stimmungslagen zu analysieren, wo Verfahren des NaturalLanguage Processings verwendet werden.Während in der ersten Hälfte des Buches vor allem „einfache“ Skripte geschriebenwerden, wird sich im neunten Kapitel mit einem Praxisbeispiel beschäftigt, wie maneine Webanwendung schreibt, die ein Machine-Learning-Modell eingebettet hat. Daszehnte Kapitel befasst sich anschließend mit der Vorhersage stetiger Zielvariablendurch Regressionsanalyse gefolgt vom 11. Kapitel zur Clusteranalyse mit nichtvorher klassifizierten Daten. Im zwölften Kapitel geht es anschließend um die Implementierungeines künstlichen neuronalen Netzes.Ab dem 13. Kapitel beginnen die neuen Kapitel, die nicht in der ersten Auflagevorhanden waren. So erfolgt in diesem Kapitel die Einführung in TensorFlow. Dabeiwird sowohl auf TensorFlow als auch auf die Bibliothek Keras eingegangen. Währenddas Kapitel eher als Einstieg in TensorFlow diente, geht es im 14. Kapitel um diedetaillierte Funktionsweise von TensorFlow. Das Buch schließt mit einem Kapitelüber die Klassifizierung von Bildern, sowie einem Kapitel über die Modellierungsequenzieller Daten durch rekurrente neuronale Netze ab.Kritik------Das Buch ist im Vergleich zur ersten Auflage noch umfangreicher geworden. Das bereitsdicke Buch ist also noch dicker geworden, durch die Hinzunahme von weiteren drei Kapiteln.Die ersten zwölf Kapitel sind im wesentlichen gleich geblieben, zumindest habeich keine sehr großen Änderungen beim drüberlesen feststellen können. Interessanterwaren da die neuen Kapitel, die sich endlich mit TensorFlow ausseinandersetzen,was heutzutage ja schon der Defacto Standard sein dürfte. Das Buch ist definitivnichts für Einsteiger. Um möglichst wenig separat nachlesen zu müssen, ist es sehrvorteilhaft und empfehlenswert schon Erfahrungen in der Entwicklung mit Pythonzu besitzen. Aus dem Bereich des Machine Learnings sind ebenfalls Vorkenntnissesinnvoll, aber nicht zwangsläufig notwendig.Das Buch ist von zwei Wissenschaftlern geschrieben und das merkt man auch. So sindviele Formeln enthalten, die ich garnicht erst versucht habe, nachzuvollziehen.Am allgemeinen Verständnis hat es daran aber auch nicht geschadet, sodass man diesegetrost überspringen kann, sofern man höhere Mathematik nicht gewohnt ist.Ich für meinen Teil konnte aus diesem Buch diverse Informationen herausziehen dieich auch in der Praxis anwenden konnte. So konnte ich viele Informationen und Beispielefür meine Masterarbeit verwenden, wo es ebenfalls um die Anwendung von Machine LearningVerfahren ging. So brachte das Buch eine umfassende Hilfestellung von derDatenvorverarbeitung über die Implementierung, Testen und Validierung der Ergebnisse.Ein Punkt finde ich bei diesem Buch aber verbesserungswürdig: Die Nutzung von Kerasund TensorFlow erfolgt erst in den „neuen“ Kapiteln und nicht in den vorherigen.Dort wird noch scikit-learn verwendet. Für das Beibringen von den Grundlagen istdies zwar auch in Ordnung. Einfacher wäre es aber, auch dort bereits TensorFlowund Keras zu verwenden, damit man als Leser sich nicht gleich mit zwei bzw. dreiBibliotheken beschäftigen muss, wenn scikit-learn nicht in der Praxis am Endeverwendet werden soll.
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili EPub
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili Doc
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili iBooks
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili rtf
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili Mobipocket
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili Kindle
Tidak ada komentar:
Posting Komentar